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Abstract— Smart Cities are probably on the more complex
environment for IOT data collection. IOT data could have
different producers, sample rates, periodic and aperiodic,
typical trends, structures and stacks, faults, etc. Thus, a strongly
flexible and scalable solution is needed to avoid investing huge
amount of resources in anomaly detection that has to be done in
real time and has to be agnostic to the above-mentioned
problems. This paper presents a solution for automatic detection
of anomalies. The proposed approach scales seamlessly and
integrates in different contexts, featuring different sensor types,
protocols, and data formats, and computationally cheap. The
research has been developed in the context of Snap4City PCP
Select4Cities project and is presently implemented in the
Https://www.snap4city.org solution adopted in several cities and
regions.

Keywords—anomaly detection, sentient cities, loT, smart
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I.

In recent years, there has been a substantial increase in the
number of IoT devices in many sectors: smart city, industry,
home, etc. With the increment of relevance of IOT data in
process management, there is an increasing need to develop
robust solutions for detecting anomalies which should be
agnostic with respect to the data type and contexts. Problems
in the ingested data are called anomalies in this paper. They
can be a sign of serious problems in the upstream chain as well
into the data ingestion process. For example, the early
detection of a fault condition may lead to identify the needs of
a maintenance intervention on a service, which may lead to
save money, and in some cases the life. For example, when
faults on data signal may lead to some incidental finding and
thus may represent alarms of civil alerts conditions (for
example, a problem on a water sensor would be due to the
inception of hearth erosion as occurred in Lungarno Torrigiani
in Florence, in 2018). In critical cases, there is the need to
provide timely and accurate feedbacks, managing large
amount of data. Massive Internet of Things (MIoT) is coming,
and thus fast and reliable early warning solutions are needed

(11, [2].

The anomalies can be divided in three categories: point,
contextual and collective [3]. A point anomaly is nothing
more than an outlier, i.e. a value significantly different in size
than the rest of the data. A contextual anomaly (also called
conditional anomaly [4]) is a value that is considered
anomalous in a certain context, while it could be taken as
normal in another, for example a time series measuring the
number of cars on a road, at different hours of the day.
Collective anomalies are not directly detectable by the
observation of a limited number of samples, since they may
emerge only from the observation of trends distributed over a
sufficiently large period of time. Depending on the type of
data, and the anomalies that are to be detected, different kinds
of approaches have been used. For example, techniques using
dissimilarity measures [5], percentiles [6], Gaussian Mixture
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models [7], Hierarchical Markov models [8], Bayesian
models [9], Switching Hidden Semi-Markov models [22]
have been applied. These are supervised approaches that
require appropriately labelled data and are aimed at detecting
collective anomalies. Machine learning approaches include
the use of Support Vector Machines (SVM) [10], Multi-class
SVM [11], Support Vectors [12], Convolutional Neural
Networks and Recurrent Neural Networks [13]. Other
techniques that have been applied in the IoT context include
temporal and spatio-temporal frameworks, for example for
analyzing air pollutants [14], Extreme Learning Machines
[15], Clustering [16] and Multivariate Clustering [17]. In case
of large datasets, where labelling data could be expensive,
clustering techniques are of help. For example, for the case of
networks intrusion detection, a clustering approach has been
proposed for the detection of unseen cases [18]. Another
proposed approach makes use of semi-supervised
hierarchical stacking Temporal Convolutional Network
(TCN), that deals with datasets with a limited number of
labelled instances [19]. As a development of RNN, LSTM
networks have been proposed to analyze time series data, and
they proved to be very accurate in modelling long time series
[20]. Through the use of LSTM Autoencoders, it is possible
to reconstruct a time series and find out if it resembles a
normal behavior by measuring the dissimilarity of the
reconstructed signal from the original one. Variants to this
schema have been proposed, for example that deal with
multivariate time series (MTS) [21]. Many of the proposed
approaches make use of limited datasets or address only one
of the issues (e.g. they detect only one type of anomaly and
are limited to a particular type of data).

This paper presents a solution for automatic detection of
sensor anomalies in the context of IoT. The proposed
approach scales seamlessly and integrates in different
contexts, featuring different sensor types, protocols, and data
formats. The aim of the present work is to provide a robust
solution for fast and accurate anomaly detection at each level
of the IoT stack, providing automatic alerts and valuable
insights to the administrators of an IoT monitoring
infrastructure. As the amount of data in IoT contexts often
grows exponentially, there is a need to develop scalable
solutions, which can be easily integrated with existing
infrastructures, and which require low resource consumption.
The objective of this research is to provide an intelligent fault
detection system at every level of the IoT stack, so as to
provide operators with valuable information on the status of
systems that do not require large computing capabilities or
waiting times incompatible with an IoT context.

The paper is organized as follows. Section II presents
the requirements of an ideal anomaly detection for IOT also
describing the most relevant problems. In Section III, the
Snap34City infrastructure is presented. Section IV introduces
a part of the data sets and samples. In Section V, the model
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for anomaly detection is presented, while Section VI presents
the results. Conclusions are drawn in Section VII.

II. REQUIREMENTS ANALYSIS

According to the above state of the art analysis, the early
detection of the anomalies on IoT data could be a valuable
instrument for the detection of dysfunctions on the stack:
monitored physical entities(home, water, pollutant, traffic,
energy, etc.), loT Devices, loT Edge/Fog, 1oT Brokers,
authentication services, connections and network devices,
servers, data shadow storage, indexes, and processes involved
in the end-to-end chain of getting and showing the data. To
this end, a number of requirements for a suitable tool for
anomaly detection have been identified and are formalized in
the following. So that, a perfect solution for anomaly detection
should be capable to detect sensor related anomalies even if
they are:

e (structure) belonging to IoT Devices with multiple
sensors, and the single IoT Devices may belong to
collection of IoT Devices. On this regard, the fault
detected on a single sensor or on multiple sensors of an
IoT Device could be a signal of fault detection at level
of IoT Device. And similarly, for the IOT Device
Collection or IoT Broker, Data Shadow storage, data
index, etc.;

(moving) located on IoT Devices that are moving,
such as Mobile App, vehicles, air quality sensors
located on busses, etc.;

(producer) belonging to IoT sensors produced by
different builders/producers, protocols, data formats,
unit of measures, data types, sample rates, etc.;

(stack faults) due to different causes/faults along the
above described stack;

(noise) affected by measurement noise, that has to be
modelled as well. This means that the solution of
anomaly detection should be resilient to the effect of
noise;

confined in one point (outlier) with respect to the
typical bounds;

contextual or collective (conditional), which could
depend on the context: time slot of the day, day of
week, city area, government regulation, etc. This
means that a description of context is also needed;

(typical trends) referring to some classification and
typical trends that are not met. For example, a value
that is beyond the typical trend for Friday morning at
10:00, having as a reference the typical trends for each
signal, that may emerge only from the observation of
trends distributed over a sufficiently large period of
time. This implies to take into account the context and
seasonal trends; please note that trends can be similar
while the same rate strongly different;

(period) on signals that could be taken periodically or
sporadically. In the context of the industry the
acquisition of data is typically periodic due to the
presence of a control system in which the sampling
period is part of the mathematical model. On the other
hand, in the context of Smart City and IoT in the other
fields the data are not periodically sampled. It could be
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too expensive, and often sensors are programmed in a
way such to avoid sending messages when the data
value has not changed significantly. Thus, resulting in
aperiodic signals, lacking a precise rhythm. This is also
the reason for which each sampled sensor values
should have a time stamp associated with and not
demanding the time stamping to the IoT brokers, that
could produce stamps affected by the latency of the
network connection.

(rate) on signals that could present different sampling
rates. As described above, in the industrial field the
sampling rate is part of the model, while in large
solutions as smart city home automation, the rate is not
constant. And a non-constant rate would not
automatically lead to an anomaly.

(scalable) on a huge amount of them. This means that
the solution has to be scalable to avoid investing huge
amount of resources in anomaly detection in real time.

If the solution is capable to detect anomalies according to
the above requirements, this also means that it is capable to
produce reliable results despite the adverse conditions of
noise, mobility, change of period and rate, etc. In addition, the
estimation of anomalies, combined with the knowledge of the
above described end-2-end stack of data gathering and usage,
can be used to understand in most cases, if the anomaly has
been caused by a fault in the: (i) data chain rather than (ii) on
physical environment, or (iii) on the device. It is therefore
important to ensure not only the data quality at the source,
through the implementation of processes that allow to monitor
and possibly correct anomalies in the systems, but it is also of
particular importance to be able to ensure the data quality after
their processing. The quality of the models and services
implemented after data processing is very much affected by
the processes of aggregation, de-noising, and cleaning up of
the data, which are necessary in an IoT context.

III. SNAP4CITY OVERVIEW

As mentioned in the introduction, the solution proposed in
this paper has been developed in the context of Snap4City
(https://www.snap4city.org). Snap4City provides services and
data of several cities/Organizations such as: Firenze, Helsinki,
Antwerp, Lonato del Garda, Santiago de Compostela, Pisa,
Prato, Pistoia, Lucca, Arezzo, Grosseto, Livorno, Siena,
Massa, Modena, Cagliari, Valencia, Pont du Gard, Dubrovnik,
West Greek, Mostar; and from regions like Tuscany, Garda
Lake, Sardegna, Belgium, Finland, Emilia Romagna, Spain,
etc. Snap4City is open to your contributions, using Snap4City
tools and contributing to its improvement, adding more tools
and features, etc. Please join the community on this portal and
on GitHub/disit. https://github.com/disit [23], [24], [25].

The service and data addressed area relate to the solution
in place in Florence and Tuscany Region as a whole. In that
area, Snap4City collects data coming from several different
domains: mobility, environment, transport, health, mobile
apps, etc. Snap4City is capable to keep under control the real
time city evolution: reading sensors;, computing and
controlling key performance indicators (KPI); detecting
unexpected evolutions; performing analytics; taking actions
on strategies and alarms. Snap4City supports the city in the
process of continuous control and supervision, tools for
business intelligence, predictions, etc.
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In the Snap4City platform, devices (sensors/actuators) are
searchable within a web application called IoT Directory,
developed for monitoring and managing the devices that are
available in the city by their Context Brokers. The IoT
Directory allows you to see IoT devices at the physical level
and single sensors/actuators with their type (e.g., temperature,
pression, velocity, humidity), and data type (e.g., float,
integer). Depending on the Context Broker, a device is
identified by a specific identification field or through the name
of the channel/topic, according to which their values are
published (e.g., in MQTT, NGSI and AMQP protocols).
Snap4City features a huge number of device types related to
air quality, bike/bus/ferry/tunnels traffic, car parking
occupation, charging stations, noise level, pollution
observations, smart bench observations, vehicle traffic, smart
waste, weather.

IV. DATA ANALYSIS AND EXAMPLES

In the context of the present work, data was crawled from
air quality and traffic related devices. Tables I reports a set of
sensor signal monitored. They are mainly air quality pollutant,
weather conditions, and traffic flow data. Please note that,
traffic flow data are typically periodic, daily and weekly,
while not all the air quality data present some periodicity. The
temperature and humidity data also have daily and seasonal
periodicities, but not weekly. All of them may have relevant
aperiodicity for sporadic events (traffic accidents, rains,
hurricanes, etc., that may be on physical world, natural and not
natural), see the example in Fig. 1. The example includes
traffic flow and pollutants, and also some anomalies due to the
dysfunction of some sensor and connections.

Please note that those data have a range of different
sample rate that goes from 1 sample per minute to 1 sample
for 20 minutes, not regular.

Fig. 1. Example of signals on a window from November to May 2020.
https://www.snap4city.org/dashboardSmartCity/view/index.php?iddasboard
=MjY50Q=

TABLE L. EXAMPLES OF MONITORED SENSORS
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Metric Category Unit Description
PMazs Aerosol ppm Particulate
Physics matter
PMio Aerosol ppm Particulate
Physics matter
NO Gaseous pg/m3 Nitrogen
Pollutants Oxide
NO2 Gaseous pg/m? Nitrogen
Pollutants Dioxide
CeHo Gaseous pg/m? Benzene
Pollutants
SOz Gaseous pg/m? Sulfur
Pollutants Dioxide
CO Gaseous ppm Carbon
Pollutants Monoxide
CO2 Gaseous ppm Carbon
Pollutants Dioxide
O3 Gaseous ppb Ozone
Pollutants
H.S Gaseous pg/m3 Hydrogen
Pollutants Sulfide
Temp-erature Meteorology °C Air
Temperature
Humidity Meteorology - Air
Humidity %
Average speed Traffic flow km/h Avg vehicle
speed
Vehicle flow Traffic flow vehicle/h Vehicle flow
Concen-tration Traffic flow vehicle/m | Vehicles per
meter

V. DATA SET MODELLING

On the basis of the requirements, and of the state of the art,
we decided to start creating an anomaly detection algorithm
for the context of smart city. This context includes cases in
which data can be periodic or sporadic and are not regularly
sampled, neither the periodic. The first aim has been to detect
problems in the infrastructure at level of sensors, devices,
storage, connections, etc., and finally also on the physical
world. For the model construction, we collected 23516 data
samples, each sample consisting of 20 features (10 values at
consecutive timestamps, 9 time intervals of consecutive
timestamps, 1 categorical feature, i.e. the sensor ID). Table
II reports the dataset schema, where [tsl, ..., ts10] are the
timestamps of [valuel, ..., valuelO] respectively. We
considered some air pollution and traffic related sensors (i.e.,
NO2, 03, CO2, PM2.5, vehicle flow).

Since we used a supervised machine learning approach,
each sample has been manually labelled as normal (0) or
anomalous (1). For this purpose, we used a web tool,
specifically developed to label time series for each device’s
sensor, by just clicking on the timeframes considered
anomalous. We applied a gradient boosting technique using
the CatBoost algorithm [26], [27], and we split the dataset in
training (2/3) and validation (1/3) sets. Since CatBoost works
with categorical features out-of-the-box it is not necessary to
perform a one-hot-encoding of the categorical feature. This
process resulted in an unbalanced dataset with a
normal/anomalous ratio of 20036/3480 (i.e., 17.36% of
anomalous samples).

TABLE IL. FEATURES FOR LEARNING SETS
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categorical feature) and the time deltas (i.e., the differences

Feature Type Description
metric categorical Sensor ID between consecutive timestamps At).
valuel numerical value Sensor ID at t TABLE III. FEATURES IMPORTANCE
value2 numerical value Sensor ID at t-1 Feature Value
value3 numerical value Sensor ID at t-2 ID 3.188
value4 numerical value Sensor ID at t-3 Atl 5.057
value5 numerical value Sensor ID at t-4 A2 4.690
value6 numerical value Sensor ID at t-5 A3 4.147
value7 numerical value Sensor ID at t-6 Atd 3.875
value8 numerical value Sensor ID at t-7 At5 3.753
value9 numerical Value Sensor ID at t-8 At6 4.232
valuel0 numerical value Sensor ID at t-9 A7 5.192
Atl numerical ts1-ts2 in ms A3 3.832
At2 numerical ts2-ts3 in ms At 6.702
At3 numerical ts3-ts4 in ms vl 1.457
At4 numerical ts4-ts5 in ms v2 0.886
At5 numerical ts5-ts6 in ms v3 2.015
At6 numerical ts6-ts7 in ms v4 2359
At7 numerical ts7-ts8 in ms v5 1.944
At8 numerical ts8-ts9 in ms v6 0.944
At9 numerical ts9-ts10 in ms v7 0.818
v8 1.163
The approach was iterated a number of times in order vo 1.605
to identity the satisfactory number of values over time that v10 1.018

could be the right compromise between addressing:

e longer time series would lead to address the problems
related periodicity. To that purpose the number of
samples would be very high since some of them have
1 sample per minute and day and week periodicity.
This means that is not affordable to take into account
seasonality without resampling and creating for each
data typical trends as performed in some cases at the
state of the art that have been demonstrated to the
insensitive to the anomalies.

shorter time series would miss the context of the
trend. 10 samples are enough to understand the last
evolution less are typically not enough to detect the
sample rate with the needed precision.

VI. EXPERIMENTAL RESULTS

The training was performed on GPU (Nvidia Titan XP) for
10,000 iterations, using cross validation (with a
validation/train split ratio of 0.33), Logloss as the loss
function, accuracy as the evaluation metric, a learning rate of
0.073 and a decision tree’s depth of 3. The learning rate was
set to 0.0389, and the class weights applied during training
were 1 and 5.673, for the normal class and the anomalous class
respectively. After training, the model was shrunk to the best
iteration (9835), consisting of 9836 trees. As expected, the
metric’s name scored among the most important features,
together the time intervals between metric's values. Table ITI
reports the features importance of the model, the most
important features being the metric’s name (i.e., the
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In addition to the above model, we used two labelling
rules as representative of the rule-based solution listed above,
to compare the effectiveness of the model. The first rule
assumes a sequence as anomalous if data is missing for more
than 1 day, i.e. a sequence is considered anomalous if Tnow
- Tlast > 1 day where Tnow and Tlast are respectively the
timestamps at the current time and for the last sample arrival.
The second rule assumes a sequence is anomalous if data is
missing for more than the median arrival time for that sensor
and metric, i.e. a sequence is considered anomalous if Tnow
- Tlast > Tmedian where Tnow and Tlast are respectively the
timestamps at the current time and for the last sample arrival,
and Tmedian is the median arrival time of data for that sensor.

Evaluation metrics reported in Table IV have been
calculated for each model’s predicted labels (i.e., the trained
model and the two annotation rules), with respect to the
manually annotated labels. The ML model reported the best
results, in terms of accuracy, precision and recall, with respect
to the labelling rules. Balanced accuracy score reports the
average of recall obtained on each class (anomalous or not).
The average precision reports the precision-recall curve as the
weighted mean of precisions at each threshold, while the Brier
Score reports the mean squared difference between the
predicted probability of the possible outcomes for an item, and
the real outcome. Table IV also reports F1 score, with macro,
micro and weighted variants, being the weighted average of
precision and recall. The ML algorithm provided good results,
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with respect to the above-mentioned requirements, and can be
deployed easily with minimal hardware requirements.

TABLE IV. EVALUATION METRICS
Model ML Rule # 1 Rule # 2

Accuracy 0.969 0.852 0.852

Balanced 0.949 0.501 0.500

Accuracy Score

Average Precision | (0,815 0.150 0.147

Score

Brier Score Loss 0.030 0.147 0.147

[0.981, [0.920, [0.920,

F1 Score 0.896] 0.0057] | 0.001]

F1 Score Macro 0.939 0.463 0.460

F1 Score Micro 0.969 0.852 0.852

F1 Score 0.969 0.784 0.783

Weighted

Neg Log Loss 1.063 5.096 5.111

Precision 0.871 1.0 0.0

Recall 0.9225 0.0028 0.0

Jaccard 0.811 0.0028 0.0

ROC AUC 0.949 0.501 0.5

Vehicle flow Traffic flow vehicle/h Vehicle flow

Concen-tration Traffic flow vehicle/m | Vehicles per
meter

VII. CONCLUSIONS

This paper describes an automatic anomaly detection
system for IoT solutions. The proposed solution meets the
requirements described above, and is able to generalize, being
able to quickly detect different types of anomalies (e.g., point,
contextual, collective) related to different types of signals,
even never observed, coming from different contexts (e.g.,
mobile, vehicles, air quality sensors), different periods and
rates. It can be applied to sensors using different protocols,
formats, units of measurement and types. It is a robust solution
that provides a good degree of accuracy even in contexts
where the measured signals are affected by noise, and is able
to capture the behaviour of IoT sensors even in typical cases
where they show a marked character of aperiodicity. In this
sense it proves to be a valuable aid for the timely detection of
faults in each level of the IoT stack (i.e., at device or individual
sensor level), and in different contexts (e.g., time of day,
weekday, city). In this regard, it should be pointed out that, in
a rapidly evolving IoT context, with an increasing number of
sensors of different types and reliability, installed in different
smart city contexts, such an approach may require periodic
training, in order to ensure that the model is updated to the
new dynamics of the observed signals.
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